A Comparative Analysis of Selected Fisher Linear Discriminant Based Algorithms in Human Faces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis (also called Linear Discriminant Analysis(LDA)) are methods used in statistics, pattern recognition and machine learning to find a linear combination of features which characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later c...

متن کامل

Linear Discriminant Analysis Algorithms

We propose new algorithms for computing linear discriminants to perform data dimensionality reduction from R to R, with p < n. We propose alternatives to the classical Fisher’s Distance criterion, namely, we investigate new criterions based on the: Chernoff-Distance, J-Divergence and Kullback-Leibler Divergence. The optimization problems that emerge of using these alternative criteria are non-c...

متن کامل

Principal Component Analysis and Fisher Linear Discriminant Analysis

Principal Components Analysis (PCA) is an appearance based technique used widely for the dimensionality reduction and it records a great performance in face recognition. PCA based approaches typically include two phases: training and classification (Draper et al 2003). In the training phase, an Eigen space is established from the training samples using PCA and the training face images are mappe...

متن کامل

Multiview Fisher Discriminant Analysis

CCA can be seen as a multiview extension of PCA, in which information from two sources is used for learning by finding a subspace in which the two views are most correlated. However PCA, and by extension CCA, does not use label information. Fisher Discriminant Analysis uses label information to find informative projections, which can be more informative in supervised learning settings. We show ...

متن کامل

Robust Fisher Discriminant Analysis

Fisher linear discriminant analysis (LDA) can be sensitive to the problem data. Robust Fisher LDA can systematically alleviate the sensitivity problem by explicitly incorporating a model of data uncertainty in a classification problem and optimizing for the worst-case scenario under this model. The main contribution of this paper is show that with general convex uncertainty models on the proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Advances in Mathematics and Computer Science

سال: 2019

ISSN: 2456-9968

DOI: 10.9734/jamcs/2019/v33i430188